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BODIPY appended cone-calix[4]arene: selective
fluorescence changes upon Ca2+ binding
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Abstract—BODIPY appended new calix[4]arene diethyl ester (1) has been synthesized in the cone conformation. With respect to
fluorescence intensity changes upon metal ion complexation, 1 shows a Ca2+ ion selectivity over other metal cations. Presence of
two proximal hydroxyl groups and two facing ethyl esters in BODIPY-calix[4]arene were observed to play an important role in
exhibiting its selective Ca2+ ion binding.
� 2006 Elsevier Ltd. All rights reserved.
The investigation of specific chemosensors for the effi-
cient detection of metal ion analytes is one of the most
important areas in supramolecular chemistry because
of their toxic impacts on our environments, roles in
living systems, and chemical significances.1 The fluoro-
phore (signaling moiety) makes human–molecule
communication possible through a light signal resulting
from its changes in photophysical characteristics,
whereas the recognition unit (ionophore) linked to the
fluorophore is responsible for the selectivity and cation
binding efficiency of the entire chemosensor.2,3 To devel-
op this fluorescence chemosensor, we have focused on
the boron dipyrromethene (BODIPY) fluorophore.
Among fluorophores, BODIPY is well known for fluo-
rescent dyes with high quantum yields, large extinction
coefficients, and narrow emission bands.4 These proper-
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ties facilitated their application in many fields, such as
fluorescent labeling of biomolecules, ion sensing and
signaling, energy transfer cassettes, light harvesting
systems and fluorescent stains.5–9

Calix[4]arenes are important macrocyclic compounds
and also ideal platforms for the development of com-
plexing agents for metal ions. Calixarenes functionalized
with appropriate cation-ligating groups, such as carb-
oxylic acid, ester, amide, crown ether, and azacrown
ether groups, are good candidates for cation recognition
due to their high selectivity toward specific cations.10

Reported calixarene-based fluorescence sensors utilize
photo-physical changes produced by a cation binding:
photo-induced electron transfer (PET),11 excimer/exci-
plex formation and extinction,12 or energy transfer.13
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Scheme 1. Synthetic route to fluoroionophores 1–3. Reagents: (a) SnCl4/CHCl2OCH3/CHCl3; (b) 2,4-dimethylpyrrole/TFA/p-chloranil/Et3N/
BF3ÆEt2O/CH2Cl2 and (c) ethyl bromoacetate/K2CO3/acetone.
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Figure 1. UV/vis spectra of 1 in the presence of 100 equiv of Li+, Na+,
K+, Cs+, Mg2+, Ca2+, Zn2+, Co2+, Cd2+, and Pb2+ ions. [1] = 20 lM
in CH3CN.
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In this letter, we report on a synthesis of BODIPY
appended calix[4]arene chemosensor exhibiting a unique
fluorescent response to the Ca2+ ion. In addition, to
prove the causative factors for this response, its analogs
2 and 3 were also prepared as references.

Syntheses of molecules 1–3 are depicted in Scheme 1.14

415 and 616 were prepared by adaptation of reported
procedures elsewhere. Compounds 5 and 7 were synthe-
sized in 57% and 34% yield, respectively, by the selec-
tive formylation of 4 and 6 using SnCl4 and
CHCl2OCH3 in CHCl3. Compounds 5 and 7 were trea-
ted with 2,4-dimethylpyrrole in the presence of TFA,
which were subsequently oxidized by p-chloranil,
neutralized with Et3N, and treated with BF3ÆEt2O to
produce the desired BODIPY derivatives 1 and 3,
respectively. Reaction of 1 with ethyl bromoacetate in
the presence of 1.0 equiv of K2CO3 in acetone gave 2
in 72% yield.14

Metal ion binding properties of 1–3 were investigated by
monitoring fluorescence and UV/vis changes upon the
addition of Li+, Na+, K+, Cs+, Mg2+, Ca2+, Zn2+,
Co2+, Cd2+, and Pb2+ ions. 1 shows a sharp and strong
absorption band at 495 nm (Fig. 1). Upon the addition
of 100 equiv of each metal ion, no distinctive change
of 1 was observed. Compounds 2 and 3 show the same
UV/vis spectral changes as 1 does.

To gain insight into the fluorescence change of 1 upon
metal ion complexation, emission spectra of 1 for
various metal cations used in UV/vis measurement were
taken and are represented in Figure 2. Free 1 shows an
intense greenish-yellow fluorescence and emits the
florescence at 506 nm in CH3CN solution (kex =
485 nm). Fluorescence intensity of 1 selectively dimin-
ished as a function of [Ca2+] (Fig. 3) compared to other
metal cations, whereas those of 2 and 3 show relatively
low selectivity toward all metal cations tested. Accord-
ing to the extent of the fluorescence emission changes,
we could obtain the association constants17 of 1 (Ka =
5.2 · 107 M�1) for Ca2+ ion.
The quenching phenomenon of 1 upon Ca2+ ion binding
is attributable to the reverse-PET (photo-induced elec-
tron transfer) mechanism.18 When the Ca2+ ion strongly
interacts with the lone pair electrons of the carbonyl
oxygen atoms (Ca2+� � �O@C) with the aid of two proxi-
mal OHs,19 then electron transfer occurs from BODIPY
unit behaving as a PET donor to electron deficient
carbonyl group as shown in Figure 4.

For complexation ratio between ligand and Ca2+ ion,
we carried out Job’s plot experiment by varying the con-
centrations of both 1 and Ca2+ ion (see Fig. 5). The
maximum point at the mole fraction of 0.5 indicates that
a typical 1:1 (ligand:metal) complexation performs in
this case.

To elucidate a role of two proximal OHs and ester group
in 1 for selective Ca2+ ion binding, tetraethyl ester
derivative 2 was prepared. The emission of 2 by excita-
tion at 485 nm is slightly quenched by either Ca2+ or
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Na+ ion binding because the cations are bound to the
four ester groups.20 As shown in Figure 6, addition of
Na+ or Ca2+ ion to a solution of 2 decreases the fluores-
cence intensity. For Ca2+ ion case, 1 is about two times
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Figure 3. Fluorescence emission spectra of 1 (1.0 lM) for Ca2+ ion
titration in CH3CN (kex = 485 nm).
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Figure 2. Reverse-PET: fluorescence emission changes (I0 � I) of
1.0 lM solutions of 1–3 in CH3CN upon addition of 500 equiv of
various metal ions. Excitation at 485 nm; I0: fluorescence emission
intensity of free 1–3. I: fluorescence emission intensity of metal
complexes of 1–3. (+) and (�) denote fluorescence decrease and
increase, respectively.
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Figure 4. Plausible complexation mechanism of 1 with Ca2+ ion.
more effective to quench the emission than is 2. The
association constant of 2 with Ca2+ ion is 4.34 ·
104 M�1, which is smaller than that of 1 (vide supra),
implicating that not only two carbonyl esters, but the
two OH groups seem to take part in the Ca2+

complexation.
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Figure 5. Job’s plot for 1 Ca2+. Y axis is for fluorescence changes of 1.
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Figure 6. Fluorescence emission spectra of 2 (1.0 lM) in the presence
of 500 equiv of Li+, Na+, K+, Cs+, Mg2+, Ca2+, Zn2+, Co2+, Cd2+,
and Pb2+ ions.
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Compound 3 as the other reference without ester func-
tional groups on the calix[4]arene lower rim was tested
for the quenching behavior in Ca2+ ion binding. We,
however, rarely observed fluorescence changes toward
all metal ions tested including Ca2+ ion. This can be also
a solid evidence for that the ester functional groups of
the BODIPY calix[4]arene play a critical role in the com-
plexation of the metal cations.

In conclusion, the cone-conformation calix[4]arene 1
exhibits a remarkable selectivity toward Ca2+ ion
that suggests possible applications as a new fluorogenic
ionophore for a sensing material useful for the Ca2+ ion.
And the carbonyl oxygen atoms of the two ester groups
and two hydroxyl groups take part in the calcium
ion complexation, these two functional groups play an
important role in the Ca2+ ion selectivity in
chemosensors.
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